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Results from idealized ocean models indicate that equatorially trapped baroclinic 
waves incident on an eastern boundary may be partially transmitted north and south 
along the coast as boundary-trapped internal Kelvin waves. The offshore scale of the 
coastal internal Kelvin waves is the internal Rossby radius of deformation a,, which 
decreases as the Coriolis parameter f increases. The effect of the presence of a continental 
slope of width L,, along a north-south oriented coastline, on the poleward propagation 
of coastal trapped internal Kelvin waves is studied in a two-layer ,!?-plane model. 
The waves propagate from regions near the equator where 8, > L, to mid-latitudes 
where S, < L,. It is assumed that f varies slowly on the alongshore scale of the waves 
L, that L 3 L,, and that either the topographic slope is weak or that the upper-layer 
depth is small compared to the lower-layer depth. All of the coastal trapped waves 
present in the model are non-dispersive. For most values off,  the cross-shelf eigen- 
functions consist of the internal Kelvin wave and an infinite set of continental shelf 
waves whose vertical structure depends on S,lL,. For SR/L,.g 1, the shelf waves are 
bottom trapped while for &R/L,  < 1 they are barotropic. The wave speeds c, of the 
shelf waves vary linearly with f, whereas the wave speed co of the internal Kelvin wave 
is independent off. As f increases through critical values fc,, where c, approaches co, 
the phase speeds and the eigenfunctions vary so that the eigenfunctions represent a 
different type of wave on either side of fc,. In the slowly-varying approximation, the 
alongshore energy flux in each eigenfunction is a constant. It follows that an internal 
Kelvin wave which has a wavelength short enough that the slowly-varying approxima- 
tion remains valid and which propagates poleward from the equatorial region where 
f < fcl will transform into a shelf wave, at  values off near fcl, and will continue 
propagation poleward in that form. As a result, coastal trapped baroclinic disturbances 
may be able to propagate efficiently from the equatorial region to mid-latitudes where 
they may take the form of barotropic shelf waves. 

1. Introduction 
An important dynamical property of linear, inviscid, time-dependent, stratified 

ocean models is the possible existence of equatorially trapped baroclinic wave motions 
(e.g. Moore & Philander 1977). These waves play a major role in studies of the unsteady 
response of the tropical ocean to meteorological forcing (e.g. Lighthill 1969; Cane & 
Sarachik 1976, 1977; Moore & Philander 1977). On an equatorial ,!?-plane, with 5, y 
co-ordinates in the zonal and meridional directions, respectively, and with Coriolis 
parameter f = ,!?y, the latitudinal trapping scale of these waves is the baroclinic 
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equatorial radius of deformation, S,, = (gHen/p2)', where g is the acceleration of 
gravity and Hen is the equivalent depth for the nth vertical baroclinic mode. An 
approximate value of S,, for a two-layer model of the eastern equatorial Pacific ocean 
is S,, 2: 260 km and the characteristic wave speed is c g )  = (gH,,)+ 2: 160 cm s-l 
(appendix B). 

The behaviour of oceanic equatorially trapped waves, both in free and in forced 
situations, is strongly affected by the presence of meridional boundaries. In  particular, 
Moore (1968) (see Moore & Philander 1977) has shown that equatorially trapped free 
waves a t  a single frequency incident on an eastern boundary may be partially reflected 
back into the equatorial wave guide and partially transmitted north and south along 
the coast as boundary-trapped internal Kelvin waves. The specific process of the 
transmission of disturbances along an eastern boundary after the incidence of an 
equatorial Kelvin wave has been studied by Anderson & Rowlands (1976) (see also 
Cane & Sarachik 1977). The ability of baroclinic disturbances, following generation by 
wind stress fluctuations over the equatorial Pacific Ocean, to propagate as free waves 
eastward along the equator and subsequently north and south along the coast of South 
America plays an important part in recent theoretical and numerical models of El Nifiot 
(McCreary 1976; Hurlburt, Kindle & O'Brien 1976). 

In  addition to the theoretical model results, there is recent observational evidence 
for the poleward propagation of velocity fluctuations along the coast of South America. 
Measurements of currents on the continental shelf and slope in the coastal upwelling 
region off Peru between 10" S and 15's by the CUEA (Coastal Upwelling Ecosystems 
Analysis) program in 1976 and 1977, show that fluctuations in the alongshore velocity 
field, which are baroclinic over the dope, generally propagate poleward non- 
dispersively with a speed of approximately 230cms-l (Smith 1978; see also Brink, 
Allen & Smith 1978). The fluctuations in the alongshore velocity component are, in 
general, poorly correlated with the local alongshore component of the wind stress, in 
contrast to other upwelling regions, and, therefore, are presumably caused by 
mechanisms other than local or nearby coastal winds. The forcing mechanism for these 
disturbances is not known a t  the present, but one candidate for the region of their 
origin is the equatorial waveguide. 

The present study is motivated primarily by a desire to understand coastal wave 
propagation processes which may be important at low latitudes off the Pacific coast of 
South America. 

In all of the above-mentioned theoretical and numerical studies on the interaction of 
equatorially trapped wave motions with eastern boundaries, the ocean model has a 
flat bottom and the boundary is represented by a vertical wall. For incident equatorial 
waves at  a single frequency, the coastal trapped waves that result, away from the 
equatorial region, are flat-bottom internal Kelvin waves (Moore 1968). These waves 
propagate poleward along the coast non-dispersively with wave speed c(") = (gHen)4 
and with a small inclination of the phase lines relative to the coast due to the p effect. 
The offshore scale is given by the internal Rossby radius of deformation S,, = dn)/f. 
Near the equator (f 4 0,  S,, + oo), the internal-Kelvin-wave region merges with the 

t El Niiio is the name given to a phenomenon which involves the appearance of anomalously 
warm surface water off the coast of South America near the equator, specifically off Ecuador and 
Peru. This condition may persist for a year or more. During the occurrence of El Nifio events 
there have been large declines in the catch of the Peru anchovy fishery. 
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Equator 

10' N 

FIGURE 1. Schematic diagram of the equatorial ocean and an eastern boundary showing the 
regions encompassed by the equatorial Rossby radius of deformation SE and the boundary 
Rossby radius of deformation SR, for the first baroclinic mode. 

equatorial waveguide as shown in figure 1 .  The wave speed c(l) of the first baroclinic- 
mode internal Kelvin wave in the region of interest off South America, for example 
between 5" and 10" S, is approximately c(l) 2: 100 cm s-l (appendix R).  

In  reality, of course, the eastern boundary is not a vertical wall, but is composed of 
a continental shelf and slope. If the width of the shelf-slope region is sm-all compared to 
the relevant offshore scale of the waves, it might be expected that the presence of the 
continental slope would have a minor effect on the wave reflexion and transmission 
processes. The width of the continental margin off the Pacific coast of South America 
is variable. An estimate, from bathymetric charts, of the distance L, over which the 
depth increases offshore from roughly 180 m to 3650 m, i.e. from 100 to 2000 fathoms, 
is given as a function of latitude in table 1 .  Also included in that table is the variation 
with latitude of the Rossby radius of deformation for the first baroclinic mode 
6,( = S,, = c(l)/f). From table 1, we see that 6, is generally larger than L, from 0" to 
6" S and that it is substantially larger than L, from 0" to 3". As the latitude increases, 
6, decreases so that, for latitudes higher than 6" S, 6, < L,. 

A horizontal spatial scale for the bottom topography of the continental margin, 
which is dynamically more important than L, for coastal trapped waves (Allen 1975), 
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TABLE 1. Parameter values off the Pacific coast of South America. L, is the shelf-slope width 
between depths of 180 m and 3650 m, i.e. between 100 and 2000 fathoms. S., is an estimated 
Characteristic scale length of the shelf-slope bottom topography (appendix B). S X is the internal 
Rossby radius of deformation of the first baroclinic mode. ci is the estimated wave speed of the 
first continental shelf wave (appendix B). The primes on S,, S;, and c; denote dimensional values 
consistent with the notation starting in 5 2. 

is the scale length 6, = H/H,, where x is the co-ordinate normal to the coast, H ( x )  is the 
depth, and the subscript x denotes differentiation. Utilizing a rough estimate, such as 
6, II L,H/AH,  we see, however, that an approximate characteristic value of 6, is 
linearly related to L, and is generally some fraction ( < 1) of L,, for example for a linear 
slope 6, II 1 /24 .  Estimated values of 8,< for the South American coast (appendix B) 
are also given in table 1 .  

For an internal Kelvin wave it may be expected (Allen 1975; see also the latter part 
of appendix A) that, when 6, decreases to the point where it has a magnitude similar 
to 6,, effects from the bottom topography of the continental slope will be as important 
as those from the density stratification. When that is the case, the internal-Kelvin-wave 
structure should be modified into that of a more general coastal trapped-wave mode 
(Allen 1975; Wang & Mooers 1976). If the structure of the mode remains dominantly 
that of an internal Kelvin wave, however, the waves will be confined to a distance 
approximately 6, from the coast. If that is the case, the waves could possibly propagate 
poleward to regions where the offshore scale 6, < L,. 

It seems doubtful that, when 6, < L,, substantial amounts of energy can propagate 
large distances along the coast. This statement is motivated by observations off Oregon 
at 45" N in the summers of 1972 and 1973 (Kundu & Allen 1976) where, in spite of the 
presence of strong stratification on the shelf, solid indications of a alongshore propa- 
gation in internal Kelvin-type wave modes have not been found. In contrast, there is 
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considerable evidence from the same location (Huyer et ul. 1975; Kundu &Allen 1976) 
for alongshore propagation of velocity fluctuations primarily in the form of barotropic 
continental shelf waves. It is possible that the propagation of baroclinic disturbances 
a t  mid-latitudes, where the offshore scale a,, E 10-15 km generally covers a small 
region over the continental shelf, is adversely affected by large inhomogeneities in the 
density field, by the relatively large mean currents observed near the coast, or by the 
irregular bottom topography of the continental shelf. 

We have a situation, therefore, where baroclinic disturbances in the form of coastal 
trapped internal Kelvin waves, which originate in the equat.oria1 region, play an 
important role in flat bottom theoretical models of the response of the eastern Pacific 
Ocean. We also have recent observational evidence for the poleward propagation of 
velocity fluctuations, which are evidently not related to local winds, off Peru. On the 
other hand, theoretical results indicate that the structure of an  internal-Kelvin-wave 
mode should change as it propagates poleward along a coast with a continental shelf 
and slope. I n  addition, a t  mid-latitudes, observations and physical arguments indicate 
that baroclinic disturbances, if they are in a form similar to internal Kelvin waves, 
are unlikely to propagate efficiently over large distances alongshore. As a consequence, 
the following question naturally arises. If, in a real ocean with a continental slope on 
the eastern boundary, there are baroclinic disturbances generated in the equatorial 
region and transmitted poleward along the coast as internal Kelvin waves, what is the 
fate of this wave motion as f increases and the offshore scale 6, decreases! 

To gain insight into the answer to the above question, we study the behaviour a t  low 
latitudes of coastal trapped waves in a stratified ocean with a continental shelf and 
slope and with a variable Coriolis parameter. The simplest possible model which retains 
the essential physics is utilized. We consider a two-layer model on a ,&plane (away from 
the immediate vicinity of the equator) with an idealized continental shelf and slope 
along a north-south oriented eastern boundary. The bottom topography is assumed to 
vary only in the onshore-offshore (east-west) direction x, and is independent of the 
alongshore (north-south) co-ordinate y. It is further assumed that the alongshore 
scale of variation of the waves 6, = L is much larger than the shelf-slope width L,, i.e. 
L % L,. As a result, all of the coastal trapped waves in the model are non-dispersive 
and the mathematics is considerably simplified. The Coriolis parameter f (y) is assumed 
to vary slowly on the alongshore scale L of the waves. The effect of the variation off is 
treated by perturbation methods for slowly varying waveguides in a manner somewhat 
similar to that used by Miles (1972) for external Kelvin waves and by Grimshaw (1977) 
for barotropic continental shelf waves. 

2. Formulation 
We consider a two-layer model on a /I-plane for the northern hemisphere. Cartesian 

co-ordinates (x‘, y’, 2‘) are utilized? with x’ positive westward, y r  positive southward, 
and zr positive vertically upward. The Coriolis parameter f’ is a function of y’, i.e. 
f = f ’(y’), with df ’ ldy ’  = - p’. Stratification is modelled by two layers of homogeneous 
fluids of different density, with the heavier fluid on the bottom. The top surface is 

t In this and the following sections, dimensional variables, for which a non-dimensional 
counterpart will be defined, are denoted with primes. Note that, in the abstract and in 1, 
dimensional variables are not denoted with primes. 
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bounded by a horizontal rigid lid. The upper-layer fluid has density p1 and a constant 
undisturbed depth Hi. The lower-layer fluid has density p2 and, in general, a variable 
undisturbed depth HL = HL(x’, y’). The total depth is H’ = H i  + HL. The difference in 
density Ap = p2 - pl  is assumed to be small, Ap g p2. 

The fluid is bounded on the east by a straight, north-south-oriented coastline at  
x’ = 0. Along this boundary there is a continental shelf and slope topography which is 
independent of y’ and which is confined to the region 0 < xJ < L,. The depth is constant, 
H’ = HA, in the interior region x’ 2 L,. The undisturbed lower-layer depth in this 
region is HLo, i.e. Hh = H i  + HLo. 

Dimensionless variables are formed in the following manner: 

where i = 1 , 2  and where subscripts 1 , 2  denote variables in the upper and lower layers, 
respectively. The variables (u’, v’, w’) are the velocity components in the (x‘, y’, 2’) 
directions, p‘ is the pressure, hf  is the perturbation height of the-density interface 
above Hio, t’ is time, L is a characteristic horizontal alongshore scale, U is a charac- 
teristic horizontal velocity, fo is the value of the Coriolis parameter at  a reference 
latitude, and = P’L/fo. 

We assume that the motion in each layer is inviscid and linear. We also assume that 
HhIL, HAIL, 1 so that the motion is hydrostatic. The continuity and momentum 
equations are integrated over the depth in each layer to give the following set of 
equations (e.g. Allen 1975): 

(HlUl),+ (HlVl), = S-%, (2.2u) 

V l t  +&I = - PlU, 

[%I -fv1 = -P1x, ( 2 . 2 b )  

(2.2c) 

(H2u2)z + ( f 4 V 2 ) ,  = - fl-% ( 2 . 3 ~ )  

[u2tl -fv2 = -P2x, (2 .3b )  

v2t +fu2 = - P 2 U .  ( 2 . 3 ~ )  

Here subscripts ( x ,  y ,  t )  denote partial differentiation, 

h = P2-P1, (2.4) 

8 = (NHA/foL)2 (2 .5)  

8 is the stratification parameter at  f o ,  

and N2 = gAp/(p2Hh) is the square of the Brunt-Vaigla frequency. The square 
brackets in ( 2 . 2 b )  and (2 .3b )  denote terms that will be neglected under assumptions 
made below. 
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PI 

t ?  
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X x = s  

FIGURE 2. General configuration of the two-layer model for the 
continental shelf and slope region. 

The coastline lies along x = 0 and the bottom topography is given by 

H = H ( x ) ,  
H = 1 ,  ~ G x ,  

0 < x < 6,  

where 6 = LJL. It is assumed that the boundary a t  the coast is vertical, i.e. 

H ( x  = 0) = H,,, + 0, 

( 2 . 6 ~ )  

(2.6b) 

and that the interface intersects the vertical section of the coast, i.e. H(,,, > HI. The 
geometry is shown in figure 2. 

We consider motions on a time scale 6, which is large compared with an inertial 
period, i.e. where 

S t B  I .  (2.7) 

If ( 2 . 2 ~ )  and (2.312) are added, we see that a mass transport stream function may be 

(2.814 b )  
defined, such that 

I n  terms of $ and h, the velocity components are [with assumption (Z.?)] 

$0 = %+ (HZ/HI) UP, - $z = %+ (HZ/HI) Vz. 

u1 = f W H , $ ,  +f-2H2(f4/  + hZt)l> ( 2 . 9 ~ )  

UZ = H-YH1 fig - f -2Hl( fh ,  + hZt)I? (2.9b) 

v1 = H-I[ - H1$z -f-2Hz(fhz - [h,tI)l, ( 2 . 9 ~ )  

~2 = H-'[ - HI $, +f-2Hl(fh,- [h,t])]. (2.9d) 

Next we combine (2.2) and (2.3) into two governing equations for the variables 
$ and h by deriving vorticity equations for the mass transport and for the velocity 
differences (Allen 1975) : 

($zz + $,, - &w,)t + &m@$, - hg) +f, $z = 0, (2.10a) 

(2.10 b)  ( h ,  + h,, + a&1 h, -fZ 8Evqt  - as"ii'f(f$, - h,) +f, h, = 0, 
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where 8i1 = H x / H ,  a = Hl/H2, 8; = flB and 
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= Hl H 2 / H .  The function 

8Rlf  = 8RC.)/f (9) 

is the local internal Rossby radius of deformation. 

typical of alongshore variations in the flow field, i.e. 
We assume that the width of the shelf-slope region is small compared with scales 

S <  1.  (2.11) 

To describe the motion on the shelf it is useful to define a new cross-shelf variable 

c = x/& ( 2 . 1 2 ~ )  

where HS/H = SHx/H = O( 1). The equations (2.1 Oa, b)  then imply that a natural time 
scale is 

i? = ts. (2.12 b )  

In  terms of g and f, the approximate governing equations for the shelf and slope region 
with (2.1 1 )  are 

($& - W$& + W(f$, - h,) +f,$$ = 0, (2.13 a) 

(hC5 + a W h S  - ( f /8H)2  h)i - aSzlf(f$, - h,) +f& = 0, (2.13 b) 
where 

8, = JB/8 = (SB)3, S = fl /SZ ,  8, = JB/S = HS/H.  (2.13c, d, e) 

(The shelf-slope width L, is used in the non-dimensionalization of S,, S and S,, whereas 
the alongshore scale L is used for J R ,  fl and JB.)  

Assumption (2.11) is the standard long-wave approximation for coastal trapped 
waves (e.g. Gill & Schumann 1974). With the scalings (2.12a,b), the alongshore 
velocity components on the shelf (vl, v2) are O(S-l) and the terms in square brackets in 
(2.2b), ( 2 . 3 b )  and the hut term in (2.9c, d )  may be neglected. As a result, the alongshore 
component of velocity is assumed to be in geostrophic balance. The major simplifying 
result of (2.11) is to make all of the coastal trapped waves in the present problem 
non-dispersive. 

The internal Rossby radius of deformation, evaluated at the interior depth 
cfIL(x = 1)/f = JR(l)/f, gives the interior offshore decay scale for baroclinic disturbances. 
We will assume that this scale is also small compared with the alongshore scale, i.e. 

J E d f  4 1. (2.14) 

In the interior, 8jj1 = 0 and JR = 8,R(1). With the interior variables denoted by a sub- 

( 2 . 1 5 ~ )  

(2.15b) 

script I ,  the approximate governing equations are 

W Z X X  + $z,,)i + S-lf, $Iz = 0, 

(hzxx - (f/81,Cd2 hI)t + S-'f,hz, = 0, 

where (2.14) has been used to neglect h,, in (2.15 b). 
The boundary conditions a t  the coast for (2.13a, b) are 

yk, = 0, hst + f h ,  = 0 at [ = 0. (2.16a) 

The boundary conditions for (2.15u, b ) ,  appropriate for coastal trapped waves, are 

$zx, $ I ,  -+ 0, hIx, hz, -+ 0 as x -+ a. (2.16 b) 
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The matching conditions for the interior and shelf solutions at  2 = S follow from the 
requirement for continuity of the normal velocity components and of the pressure. 
These conditions are 

$v = $zy, $z = h = h,, h, = h,, a t  x = 6. ( 2 . 1 6 ~ )  

The variation of the Coriolis parameter with y is treated here by assuming that the 
alongshore scale of variation of the waves is small compared with they scale of variation 
of the Coriolis parameter, i.e. that If(df/dy)-ll 9 1, which is equivalent to 

B/f 4 1 -  (2.17) 

As a result, f varies slowly on the alongshore scale of the waves and the problem 
reduces to that for the propagation of waves in a slowly varying environment. The 
assumption (2.17) leads naturally to the definition of the slow variable 

y = PY, (2.18) 
such t h a t f = f ( Y )  = 1 -  Y. 

To summarize the assqmptions made concerning the spatial scales, the onshore- 
offshore scales 6 and 8,,l,/f are assumed in (2.11) and (2.14) to be small compared with 
the 0 ( 1 )  alongshore scale characteristic of the wave motion. The latter, in turn, is 
assumed in (2.17) to be small compared with the y scale of variation of the Coriolis 
parameter. All of these are reasonable for a large class of coastal trapped waves. 

3. Solutions for constant f 
We first consider the nature of the coastal trapped waves described by (2.13), (2.15) 

and (2.16) for a constant f, i.e. with f, = 0. We look for free-wave solutions in the form 

[$, hl = [#(a g ( 8 1  Re:{A OXP [ -Wf+ C-lY)l}, (3 . la ,  b )  

where w is the radian frequency, c is the phase velocity in the negative y direction, A is a 
complex constant with IA I = 1, and Re denotes the real part. 

Substituting (3 . la ,b)  in (2.13a,b) and in (2.16a), we obtain 

($66 - 8 2  $6, + (6Bc)-1 (fd - 9 )  = 0, ( 3 . 2 ~ )  

(sg+aSilgg- ( f / W g )  -@,c)-lf(f$-s) = 0, (3.2b) 

$ = 0, g 6 + ( f / c ) g =  0 at c =  0. (3.3a, b )  

A boundary condition for the shelf variables at  5 = 1 may be derived by substituting 

[$z, hzl = [$I(.) ,  g,(x)l R e v  exp [ - iw(f+ C-lY)l}- (3.4a, b )  

in the interior equations (2.15), solving for Q, and g, with boundary conditions (2.16b), 
applying the matching conditions (2.16c), and utilizing (2.11). The result is 

$6 = 0, g c ; + ( f / ~ , , , ) g  = 0 at 5 = 1.  (3.5a, b)  

The solutions to (3.2), (3.3) and (3.5) are eigenfunctions ($,,g,) with corresponding 



564 J .  S.  Allen and R.  D .  Romea 

eigenvalues c,. An orthogonality relation for the eigenfunctions is most conveniently 
derived if (3 .2  a, b )  are rewritten in the form 

(+[/HI[ + ( H [ / H 2 )  c-l (.f# - 9)  = 0, ( 3 . 6 ~ )  

(9&H)[ -f2(Xf13-1 9 - f ( H J H 2 )  c-'(f$ - 9 )  = 0. (3 .6b )  

By multiplying ( 3 . 6 ~ )  and (3 .6b )  for ($,, g n )  by, respectively, #m and gnL, doing this 
again with the n and m reversed, integrating the four equations over 6 from 0 to 1 and 
combining, we obtain the orthogonality relation 

f (lo1 [H-l(#nc#ng + (af2) -1gn[gni i )  + ( ~ ~ ! ) - 1 g n g n ~ d <  

+ ( ~ ~ ~ ( l ~ a ( l ) ~ ( l ) ) - l g n ( l ) g m ( ~ ) )  = snm &nJ (3 .7)  

where S,,, is the Kronecker delta and where &, is the average energy density in each 
mode : 

gn, = ; ( Jol [H-l($&+ (af2)-1sts) + f~H!)-'92,1~5+ ( f 6 ~ l ) a ( l ) H ~ l ) ) - ' R ~ ( 1 ) )  * (3 .8 )  

By combining the integrated equations in a different manner we may obtain an 
alternative orthogonality relation : 

where, with ( 3 . 8 ) ,  the factor on the right-hand side of ( 3 . 9 )  follows from multiplying 
(3 .6a ,  b )  for (q5n, y n )  by, respectively, #, and g,, integrating over f ;  from 0 to 1 and 
combining. The result is 

c n n  = if-'[ IO1 ( H [ / H ~ )  ~ + n  -gn)2d t+  ( a ( n ) ~ ( n ) ) - 1 g : ( o ) ]  . (3 .10)  

To illustrate the nature of the solutions to (3 .2 ) ,  (3 .3 )  and (3 .5 ) ,  it is desirable to 
obtain analytical results. This is difficult in general because of the variable coefficients 
in ( 3 . 2 a ,  b ) .  If the exponential shelf profile of Buchwald & Adams (1968) is used, 6, is 
a constant and constant coefficients arise in ( 3 . 2 a ) .  Variable coefficients remain, 
however, in ( 3 . 2 b )  and analytical solutions are still elusive. That case was solved by 
Allen (1975) with perturbation methods for 6,(,, 1 .  It is also possible to  obtain 
perturbation solutions to ( 3 . 2 a , b )  for general values of 6, if i t  is assumed that 
a = H l / H ,  < 1. That procedure is outlined in appendix A for the exponential slope. In 
the present problem, the essential qualitative features of the solutions may be clearly 
illustrated with a very idealized 'weak slope' model for which analytical results are 
easily obtained for general 6,. I n  this model, shown in figure 3, the continental shelf- 
slope region is represented by a linear bottom slope of small magnitude, i.e. by 
H = 1 + 6i1  (5- l ) ,  where 6, is a constant and 6g1 < 1 .  This is, of course, the large-6, 
limit of the exponential slope. 

With the 'weak slope' model, (3 .2a ,  b )  simplify to 

(3.11 a )  

(3.11 b )  
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x = s  

FIGURE 3. The geometry of the 'weak slope' model. 

where S,, SR = SIt(l,, and a = H1/H2,,, are constants. An implicit assumption involved 
in the formation of (3.11 b) is that  8, a(SIL/ f ) .  For future use, we define 

y2 = f ( S B C ) - l .  (3.1 1 c) 

The boundary conditions are given by (3.3) and (3.5). 
Since all the coefficients in (3.1 1 a,  b) are constant, explicit analytical solutions may be 

determined readily. The algebra simplifies even further and the physical structure of 
the results becomes more transparent, however, if (3.11 a,  b) are solved by perturba- 
tion methods assuming that 

a <  1. (3.12) 

Using assumption (3.12), approximate solutions may be obtained in the following 
manner. With the variables expanded as 

$4 = &+ ..., g =a&&+ ...) c = cn+  ..., (3.13a, b, c)  

the lowest-order approximations to (3.11 a,  b) are 

6vgE + (aBCn)-lf$n = 0, ( 3 . 1 4 ~ )  

OntL- ( f / a R ) 2 @ n  = (SBCn)-lf2$n. (3.14b) 

Equation ( 3 . 1 4 ~ )  is uncoupled from (3.14b) and may be solved directly for &. The 
solutions are 

$m = Dnsinkn<, k, = 4(2n-i)n,  n = 1 , 2  ,..., ( 3 . 1 5 ~ )  

a n  = D n k i f ( k i  + (f/SRY)-' [ - sink,[+ En exp ( -C.t'/aI<) + Fnexp ( -f(l+ kJ/ad 
+ Gn exp ( -f (1 - 5)/SR)I,  (3.15 b) 
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E, = - k , C , 6 ~ f - ~ ( C , - 6 ~ ) - ~ ,  

Fn = i sin k,(c, + SR) (c, - 8R)-1, 

G, = 8 sink, = $( - l),--l. 

The wave speed is given by 
C, =f (S ,k ; ) - l .  

One additional solution exists and may be found using the scaling 

g =go+ ..., = ql0+ ..., c = co+ ... . 
With (3.17a,b,c), (3 .1la,b)  become 

f705t- (f/W2f70 = 0, 

$055 + (bco)-lf$o = @BCo)-l go- 

In  this case, ( 3 . 1 8 ~ )  may be solved directly for go. The solution is 

go = co exp r - ( f / U  51, 

(3.16 c) 

(3.1513) 

(3.15 e) 

(3.16) 

(3.17 a, b, c) 

( 3 . 1 8 ~ )  

(3.18 b )  

( 3 . 1 9 ~ )  

$0 = co[( f2~~)SI j1+f] -1{exp[- ( f /SR)~]-c~sy~+Is iny~},  (3.19b) 

I = [f(yS,)-l exp ( -f/S,) - sin yl/cos y, ( 3 . 1 9 ~ )  

and where y is given by ( 3 . 1 1 ~ )  with ( 3 . 1 7 ~ ) .  The wave speed is determined by (3.3b) 
and is 

CO = 8,. (3.20) 

Consequently, for values of the parameters where the above procedure is valid, the 
eigenfunctions ($,, gn) [n = 0 ,1 ,2 ,  . . .] are comprised of the set of solutions ($,, 0,) 
[n = 1,2,  ...I and the single solution pair (go, go). The solutions $n have a cross-shelf 
structure similar to barotropic continental-shelf waves (e.g. Buchwald & Adams 
1968). We will refer to ($n, 0,) as the shelf-wave solutions. The vertical structure of the 
velocity field given by these solutions, however, depends on 6,. For S, < 1, the velocity 
field is approximately depth independent and these are essentially the barotropic 
continental-shelf waves that would exist if the stratification were absent. For 8, B 1, 
0, N - f $n, which implies ul, v1 - 0, and the waves are ‘bottom trapped’, i.e. the 
motion is confined to the bottom layer (Rhines 1970). We will refer to the single solution 
pair ($o, go) as the internal Kelvin wave. The structure of go and the wave speed (3.20) 
are identical to those found for a flat-bottom internal Kelvin wave. In  this case, 
however, there is a barotropic contribution to the onshore velocities from fro, so that 
ul, u2 + 0. For all of the eigenfunctions the phase velocity is positive c > 0, SO that the 
propagation is poleward. 

We use the term eigenfunction specifically to represent a single solution pair (q57L, gn) 
whose eigenvalue c, has a continuous dependence on the parameters of the problem, 
for example on f. We use the term wave more loosely to represent one of the solutions 
with certain physical characteristics, for example shelf wave for ($,, 0,) or internal 
Kelvin wave for ($o, gob). 

Note that 0, is unbounded (3.15c,d) if c, = 6, and that $o is unbounded ( 3 . 1 9 ~ )  if 

where 
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y2 = f (8B8,)-I = k2,, so that cosy = 0. This is the case if the wave speed obtained in 
(3 .20 )  for the internal Kelvin wave coincides with the indicated wave speed (3 .16 )  of 
one of the shelf-wave solutions, which occurs when 

8, = f ( 8 , k y .  (3 .21)  

Near these values of the parameters, the method used in finding the solutions (3 .15)  
and (3 .19)  is invalid and a different procedure must be followed. I n  the ‘weak slope’ 
geometry, with 8, $ 1 andf = O ( l ) ,  the equality (3 .21)  can only occur when 8, < 1 
and hence when the self-wave solutions are barotropic. 

Next we examine the sohtions when the parameter values are in the vicinity of 
points like (3 .21 ) .  The two types of solutions, (3 .15 )  and (3 .19) ,  must be considered 
simultaneously in these regions. It is assumed, consistent with (3.21 ), that 8, 4 1. I n  
this limit, no assumption about the magnitude of u is necessary. 

In a manner similar to that used before for u < I ,  approximate solutions for 8, < 1 
may be written 

# = D sin yt: + C 8 ~ ( c 8 , f z ) - ’  [exp ( -f</812) - cos yg], 

g = Cexp ( -ft:/8,,)-D8~u(8BC)-1siny<+Eexp(f(<- l)/8,), 

F: = $D[&;a(8,c)-1] [8,yf-1cos y+sin y], 

( 3 . 2 2 a )  

(3 .223)  

( 3 . 2 2 ~ )  

Substituting ( 3 . 2 2 ~ )  b )  in the two additional boundary conditions (3 .3b )  and ( 3 . 5 a ) ,  

( 3.23 a)  

C8k(S,cf2)-1siny+Dcosy = 0, (3 .23b)  

where we have neglected the exponentially small term Xexp (-f/S,) in ( 3 . 2 3 ~ ) .  The 
requirement that  (3 .23u,  b )  be compatible gives an equation for the eigenvalue c :  

where 

and where / 3 .22a ,  b )  satisfy the boundary conditions ( 3 . 3 ~ )  and (3 .56 ) .  

we obtain 
C(Sj i ’ -c - ’ )+Dy8~a(S,cf  )-1 = 0, 

where 
cosy(8z1 - c-’) = R, 

R = ~8&yf-~(8,c)-~sin y. 

( 3 . 2 4 4  

(3 .24b)  

The term R on the right-hand side of (3 .24n)  is small and may be neglected if either 
of the two factors in the term on the left-hand side are greater in magnitude than R. 
Under these conditions, the approximate solutions to (3 .24)  are the following. 

For 18~1-c-11 9 1x1: 
COSY = 0, y = k,, C,, = f (8Bk:)-’,] 

D,  = O( 1 ) ,  c, = 0(8& D,. 
(3 .25)  

These are the shelf-wave solutions (3 .15) .  
For Icosyl $ IRI: 

co = a,, c, = O ( l ) ,  Do = O(8 , /S~~ ,CO.  (3.26) 

This is the internal-Kelvin-wave solution (3 .19) .  
When 8, N f (8Bki)-1,  both factors in the term on the left-hand side of ( 3 . 2 4 ~ )  are 

small and R must be retained to obtain the solution. We assume that this condition is 
approached through the variation of the Coriolis parameter f .  Consider the value of 
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fc f 

FIGURE 4. Schematic of the variation of the wave speeds as a function off for the two eigen- 
functions which, for f < fc, represent the internal Kelvin wave and the n = 1 shelf wave. 

f to be initially small enough that c ,  < 8, for all n. As the magnitude off increases, 
a critical value 

f c  = 4 3 b k z ,  (3.27) 

is reached wbere the wave speeds of the internal Kelvin wave and the first (n = 1 )  shelf- 
wave solution, as given by (3 .25)  and (3 .26) ,  are equal. 

A solution for c is sought in the neighbourhood of ,f = f c .  We expand about that 
point by letting 

f = f & + f ) ,  c = c,(l+c"), (3 .28a ,b )  

where cc' = S,, and$, c" < 1 .  The approximate solution obtained from (3 .24)  is 

z* = BtJ+ (f"+ W I ,  
K = 8aS;(S;f&)-'. 

E* = zc* = f gK3 = f ( 2 a S 3  (S,f$)-l, 

where 

F o r f =  0, 

(3.29 a)  

(3 .20b)  

( 3 . 3 0 ~ )  

D = T ( 2 6 , / ~ ) 4 f , ' C .  (3 .30b)  

For f>  Oandf2a K ,  
c"+ - f, 
c"- - 0, 
F, - 0, 

C N - S&$-'D, 

D - (S,/S,)J-lC. 

D - (S,/S,)f-lC, 
Forf < 0 andfz a K ,  

(3.31 a, b)  

(3.31 c ,  d )  

(3 .32a ,  b )  

E- N f, C - - S&f-lD. (3 .32c ,  d )  

A plot of the wave speeds for these two eigenfunctions as a function off is given in 
figure 4. We can see from this plot and from (3 .31)  and (3 .32)  that the eigenfunction 
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which represents an internal Kelvin wave for f < f c  changes structure and wave speed 
as f increases so that for f > f c  it represents the n = 1 continental-shelf wave. When 
f = f c ,  the eigenfunction is composed of a combination (3.30b) of both type waves and 
has a wave speed cc( 1 + &+). The eigenfunction which is the n = 1 shelf wave for f < f c  
transfqrms as f is increased so that for f > f c  it  becomes an internal Kelvin wave. The 
variation with f of the cross-shelf structure of the velocity components associated with 
these two eigenfunctions is shown, for the exponential slope solutions, in figures 5 and 6 
of appendix A. The fact that the eigenfunctions change structure to represent a 
different type of wave as f varies plays a central role in the following sections. 

4. Solutions for slowly varying f 
We now consider the coastal trapped-wave solutions to (2.13), (2.15) and (2.16) when 

f is a slowly varying function of y. In this case, f = f ( Y ) ,  Y = /3y, and /3 < 1. Free wave 
solutions are sought in the form 

A 
where here c = c(  Y )  and the variables 4, g, #z, gz also depend parametrically on Y ,  
for example # = #(c;  Y ) .  

The solutions for the interior variables, which satisfy boundary condition (2.16b) are 

(4.2a, b) #z = BexP [P1@ - S)l, 9, = Q exp [uz(x - 811, 
where, with (2.11), 

P1 = -S-l[~(4SfY/4 + 8 l + l l 9  ( 4 . 2 ~ )  

and where the following assumptions, consistent for coastal trapped waves with ,8 < 1, 

Boundary conditions for the shelf variables at [ = 1 may he derived by using the 
interior solutions (4.2) and the matching conditions ( 2 . 1 6 ~ ) .  These are 

#e = ( -~i ,8fYw-'-SIw/cl)# a t  f = 1, (4.3a) 

s[+(fl~R(ll)g = -i(9,8f*/49 at E = 1. (4.3b) 

The equations for the shelf variables are 

(#E/H)f + (q/W c-l (f# - 9)  = iPRHS1, ( 4 . 4 4  

(4.4b) 

RHSl(#> 9)  = --@--l[fd-l4( + (HC/H2) (f4P .-9Y)I, (4.4c) 

RHSz (9,s) = -W-l[fP(aH)-'g(-f (f#P -gP)l* ( 4 . 4 4  

$= - i P ( c / ~ ) # ~ ,  g E + ( f / c ) g  = -i/3(f/w)gp at 5 =.o. ( 4 . h b )  

( g c / a q  -f 2(8H?)-lg --S(HpW c-'(f# - 9 )  = i/9RHS2, 
where 

The boundary conditions at [ = 0 are 
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The solutions are expanded in the form 

9 = A($,+i&,+ "'1, 9 = A(g,+i&g,+ ... ), (P.6a, b)  

where A is a complex constant with JAl = 1, $o, $1, yo, g, &re real variables, and the 
subscript n denoting the eigenfunction, for example $ = #,, $o = $On, has been 
dropped. Substituting (4.6a, b )  into (4.3), (4.4) and (4.5), we find that the lowest-order 
solutions $o and go satisfy the same equations and boundary conditions as the constant 
fsolutioxis (3.6), (3.3) and ( 3 4 ,  but withf = f ( Y ) .  

The equations for $1 and g1 are 

($lt/H)t + ( H p )  c-l (fh- m) = RHSl($O, 901, 

(sl&H)t -f2(&H?)-l 91 - f ( f p 2 )  c-'(f$1- 91) = RHS,($o, go), 

( 4 . 7 4  

(4.7 a) 
with boundary conditions 

$1 = 0, 915. + (f/4 91 = - ( f /4  90P at 6 = 0, (4.8a, b )  

A t  = - (ifP/4 $0, 915+ (f/6M1))91 = - ( i fP /WO at 5 = 1. (4.9a9 b )  

The second term on the right-hand side of ( 4 . 3 ~ )  indicates that an O(6) real correction 
to $o is required. This O(Sw/c )  term is, by assumption (4.2e), formally larger in magni- 
tude than the O(i /3fp /w)  term that appears in ( 4 . 9 ~ ) .  It is not necessary, however, for 
the determination of the Y variation of the lowest-order solutions $o, go to consider the 
small O(6) real corrections to $o, go and c and they are neglected. 

A compatibility condition for $1 and g1 (Ince 1956) may be determined by multi- 
plying the equations (3.6u, b )  and (4.7a, b )  in the following manner: ( 3 . 6 ~ )  and (3.6b) 
for ($o, go) by, respectively, $1 and gl; ( 4 . 7 ~ )  by do and (4.7b) by go. These four equations 
are then integrated over 6 from 0 to 1 .  Utilizing the boundary conditions (3.3), (3.6), 
(4.8), (4.9) and combining the results, we obtain 

( 4 . 1 0 ~ )  

which, with (3.10), may be written as 

(C0ngOn)r  = 0. (4.10b) 

Equation (4.10) is simply an expression of the conservation of wave action, which 
reduces here to the statement that the flux of wiZve energy density con go, along the 
coast is independent of Y for each eigenfunction. This is a standard result for slowly 
varying waveguides (Bretherton 1968; for example for shelf waves, see Grimshaw 
1977). It is implied by (4.10) that, as Y varies, energy in a given eigenfunction will stay 
in that eigenfunction as long as the slowly varying approximation is valid. Evidently, 
this will be the case even if the structure of the eigenfunction changes from one type of 
wave to another, as was found in 5 3 for values off around fc. A simple mechanical 
system with an analogous type of behavivur is discussed briefly in appendix 0. 

For f ( Y )  in the neighbourhood of fc, or in the neighbourhood of other critical values 
off that satisfy (3.21), the coefficients C, and D, vary more rapidly with Y than they 
do otherwise. It is desirable to examine the variation of the solutions in these regions to 
determine the requirement on the magnitude of c / w ,  in terms of the other parameters 
of the problem, such that the slowly varying approximation remains valid. 
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For the 'weak slope ' model in 5 3, co,Lc?on reduces to  

(4.11) 

where a and S, are constants. ITe assume that S, < 1, consistent with (3.21). The 
solutions are given by (3.22u, b). Substituting (3 .22~)  b )  in (4.11) and retaining only 
the largest terms, we find 

(4.12) 

where we have made the approximation sin ?y 1: 0 in the first term on the right-hand 
side of (4.12) based on the fact that, when D i  is appreciable compared to Ci, y 2: k,. 

At f = fc, the relation between Cn and D,& is given by (3 .30b) )  which implies that the 
two terms on the right-hand side of (4.12) are equal in magnitude. Consequently, at  
fc the energy flux in a given eigenfunction is equally divided between the two types of 
waves. 

To determine a requirement on C/Q for the validity of the slowly varying approxima- 
tion, we examine the magnitude at  fc of the ratio of a typical term on the right-hand 
side of (4.4a, b) and (4.5a, b )  to an appropriate term on the left-hand side. An appro- 
priate term on the left-hand side is one of the smallest terms which must be retained 
to obtain the lowest-order approximation for the eigenvaliie c. For example, at f = fc 
(4.5b) is approximately 

= 8Si1 f D i  + (fa)-' Ci, 

Qg + (fclcc) (1 - GA s = - i P ( f c / W )  QP at 5 = 0 (4.13) 

and the ratio to be examined is 

B ( f C l 4  QP / [ W l C C )  sl 2: B ( C C / @ )  G1 CnP /cn- 

B ( c c - 1 ~ )  C% fir/+ 2: B(cc/w) C"% Dnylnna 

From (4.4u), we obtain in a similar manner the ratio 

Utilizing (4.12)and(3.30b), we find that, at. fc, D,lY/Da= -C,,,/Cn.Consequently, the 
magnitudes of these two terms a t  fc are similar and we concentrate on a determi- 
nation of 

Rl = P(cc /w)  G1C7,P/C,& at f = f c .  (4.14) 

In  the neighbourhood of fc, ( 3 . 2 3 ~ )  is approximately 

D,, N - ( 7 n E ~ B  fc(aS&kl)--l.  (4.15) 

Utilizing (4.12) and (4.15), we find 

Cn,/C7b = & / E  = f 1/(2fcKt) a t  f =ft7. (4.16) 

It follows from (4.16) and (3.29~)  that 

JRII = BIcc/wI (fcK1-l. (4.17) 

We point out that, if a rough estimate of R, is made by approximating C, around 
fc by C7,,/Cn N AC,(C,AY)-l N (AY)-' N (,fcAf)-l and, by estimating A ~ N  2K4 
from (3.291, an expression identical to (4.16) is obtained. For the validity of the 
slowly varying approximation it is necessary that lRll 

ICC/Wl  4 f c K / P .  (4.18) 

1, which implies 
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Not8e tha.t, since clP = - c , / f  from (3.16), the parameter Rl may be expressed as 

R, = PI (c,/4 C l P C 4  CC(ACC)-2, (4.19) 

where Acc = 2cc1Ec,1 is the difference in wave speeds a t  fc. It would therefore be 
possible to estimate the right-hand side of (4.1 8) graphically from an accurate plot of 
the eigenvalues c versus f. 

It is also possible to express R, as 

(4.20) 

where I, = (w/cl) is an alongshore wavenumber, c1 is given by (3.16) and Alc is the 
difference in wavenuntbcr a t  fc, i.e. 

(4.21) 

5.  Discussion 
The results from the analysis in $ 3  and $ 4 provide the answer, within the limits of 

the present idealized model, to the question posed in $ 1  concerning the fate of wave 
energy which starts propagation poleward from the equatorial region in the form of a 
baroclinic internal Kelvin wave. 

Equation (4.10) states that the flux of wave energy density in each eigenfunction is 
independent of Y .  This implies, as long as the slowly-varying approximation remilins 
valid, that energy present in one eigenfunction at  low latitudes will remain in that 
eigenfimction as the wave propagates poleward. This will be the case even if the 
structure and wave speed of the eigcnfunction change from one type of wave to another. 

Jt  was shown in $ 3  that, for most values off, the eigenfunctions are comprised of a 
set of shelf-wave solutions and an internal-Kelvin-wave solution. The wave speeds of 
the shelf waves vary linearly with f,  whereas the wave speed ofthe internal Kelvin wave 
is independent of f. In the vicinity of critical values fc off, where the wave speed of a 
shelf wave approaches that of the internal Kelvin wave, the eigenfunctions and eigen- 
values vary. As shown in figure 4, the wave speeds, considered as a function of ,f, do 
not intersect, but veer off and exchange properties. Likewise, the eigenfunctions 
change so that they represent a different type of wave on either side of fc. Consequently, 
the eigenfunction which has the structure and phase speed of an internal Kelvin wave 
at low latitudes (f < fc) changes as f increases through the critical value.fc such that, 
for f > fc, it has the structure and phase speed of the n = 1 shelf wave. 

It follows from these results that an internal Kelvin wave which propagates poleward 
from the equatorial region where f < f c  will transform into the n = 1 shelf wave, a t  
values off near fC, and will continue propagation poleward in that form. 

To assess the implications for the wave motion off South America, estimates of 
numerical values of the parameters are required. For that purpose, we use the relations 
in appendix A derived from the exponential slope model under the assumption 
a(,,) < 1. Although that model is still highly idealized, the specific formulae derived 
from it should give more accurate approximations for parameter values under oceanic 
conditions than those from the 'weak slope' model. As shown in appendix A, the 
qualitative behaviour of the eigenfunctions in both cases is similar. 

Details of the calculation of parameters are given in appendix B. Estimated values 
of the dimensional wave speed c; of the n = 1 shelf-wave solution as a function of 
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latitude are listed in table 1. These values are obtained using the local shelf-slope 
width L,. It may be seen that c; generally increases as the latitude increases, reflecting 
the dependence on f, but that the variation is not monotonic owing to the variation of 
L,. Using the estimate c; = 100 cm s-l, we find that, as the latitude increases, c; 2: c; 
first a t  some point between 10' and 11" S. 

We use the parameter values at  the critical latitude near 10" to estimate in appendix 
B the magnitude of the restriction on the dimensional alongshore wavelength 8; SO that 
the slowly-varying approximation is valid. This condition is obtained from (A ZO), 
which is similar to (4. lS),  but with appropriate modifications from the exponential 
slope geometry. The result is 

Since the waves are non-dispersive, (5.1) may be converted, with c; = 100 cm s-l, to a 
restriction on the period T' of the fluctuations, which is T' -4 13 days. Although some 
of the wave disturbances of interest may have wavelengths and periods that are too 
large to satisfy these conditions, the magnitude of L, does not appear to be so overly 
restrictive as to rule out the possible qualitative applicability of the results to a 
reasonably large class of coastal wave moti0ns.t We note that the estimated y' distance 
over which the transformation occurs is L,,(2n)-l N 175km. 

The assumption that the waves are coastally trapped (4.2e, f )  also leads to restric- 
tions on the period. For a given alongshore wavenumber ( w / c ) ,  (4.2e, f )  in dimensional 
variables are equivalent to T' -= Ti, Ti, where 

8; < L ,  N 1100 km. (5-1) 

T; = 2(27r)2(/3'8;)-1 and Tb = 2(2n) (/3'8;1)-l. 

Since 8; % 8k by (2.14), T; < Ti. For 8; = 1100 km, TI = 36 days, which leads to a less 
restrictive condition than that for slow variations. 

The variability of ci along the coast of South America indicates that the situation 
there is more complicated than represented in the present idealized model. The major 
qualitative difference results from the subsequent drop in magnitude of c; below that of 
c; in the region around 14" and 15'5. This variation occurs because the continental 
slope is very narrow in that location. 

The effects of alongshore variations in topography were not included in the present 
model because the main point of interest concerned the effect of the monotonic lati- 
tudinal variation off. The model could be extended to take into account slow along- 
shore variations in topography, as in Grimshaw (1977). A result similar to (4.10) would 
follow, and the shelf-wave solutions and wave speeds would be dependent on the local 
topography as well as on f. The conclusions would be similar to those stated here, since 
we have referred to local values of c;, but realistic alongshore variations in topography 
might lead to a more restrictive condition than (5.1). 

The actual alongshore variations in slope topography off South America may result 
in substantial scattering of energy from one eigenfunction to another. In addition, it 
might be expected that scattering would be relatively large near critical latitudes where 
two eigenfunctions have similar wave speeds. Nevertheless, in spite of the possible 
complexity of the real situation, the qualitative behaviour found here would seem to 

t It is likely, baed on the analysis in Grimshaw & Allen (1979) for the linearly coupled, 
slowly varying oscillator problem, that the results will be approximately valid even if 8; % Lv 
(see Appendix C). 
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be of considerable interest, The primary result is that, for an internal Kelvin wave that 
satisfies (5.1) and propagates poleward over a continental margin, the direct route, i.e. 
the route that does not involve or depend on scattering, includes the transformation 
near a critical latitude to a shelf wave and the subsequent propagation poleward in 
that form. 

Given that there is considerable observational evidence for the propagation of 
disturbances a t  mid-latitudes in the form of barotropic continental shelf waves, this 
result indicates that energy in baroclinic disturbances in the equatorial region may be 
able to propagate efficiently to higher latitudes where it may eventually take the form 
of barotropic shelf waves. 

This research was supported by National Science Foundation grants DES75- 15202, 
OCE78-26820 and OCE76-00596, OCE78-03380 (Coastal Upwelling Ecosystems 
Analysis (CUEA) program). The authors thank Dr R. Grimshaw for several helpful 
comments. 

Appendix A. Exponential slope 
Approximate solutions to (3.2), (3.3) and (3.5) may be obtained by perturbation 

methods if it is assumed that a = HJH, < 1. Analytical results are obtainable if the 
slope is assumed to have an exponential form (Buchwald & Adams 1968): 

H = exp [(C- l ) / b I .  (A 1) 

This depth profile, although still highly idealized, is a more realistic model for a 
continental shelf and slope than the ‘weak slope ’ model used in $3. The ‘weak slope ’ 
model is utilized there because the important qualitative features of the solutions are 
evidently retained while the algebra is considerably simplified. To show that the 
results are qualitatively simiIar in the two cases, the solutions for the exponential slope 
are summarized below. These solutions are also useful to have for estimates of para- 
meter values under oceanic conditions. 

Equations (3.2a, b )  may be written in the form 

(& - W$J+) + ( b c ) - l  (f# - 9)  = 0, 

g&-(f2/8Hl)g = a[(6Bc)-1f(f#-g)-6~1gg+ (f2/SHl)gl’ 

The boundary conditions (3.3a, b )  and (3.5a, b )  are 

4 = 0, g s + ( f / c ) g =  0 at C =  0, 
#E = 0, gE+ [f(l +a(l))/SHl]tg = o at 5 = I. 

a(,) = HI/HZ(O) e 1. 

a = H l / 4  = a(o)f&(o)/H2(6) = ~(0)4O)/H(i3 + O(a?o, 1- 

For an exponential slope, 8, is a constant. We assume that 

In  (A 2 a ) ,  we utilize 

We also define, for future use, 
y2 = f(CY*c)-l- &&2. 
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Solutions may be obtained following the general procedure used in (3.13)-(3.20). 
With the variables expanded in the form 

# = $,+ ..., g = a(,)&+ ..., c = c,+ ..., (A 7a, b, c) 

the lowest-order approximations to (A 2a, b) are 

$g6- $g + (GBCn)-lf $n = O, (A 8a)  

brig- Cf2 /@t )  On = ( H , o ) / W  (aBcn)-lfZ$n, 

bg+ Cf/aR)On = 0 a t  5 = 1, (A 9a)  

8% = SH, = S&(l +a)  = @q0)(1 +a(,)). 

(A 8b) 
and (A 4 b) becomes 

where 
(A 9b) 

The boundary conditions for (A 8a, b)  are given by (A 3a, b ) ,  (A 4a) ,  and (A 9a). The 
solution for $, is (Buchwald & Adams 1968) 

where 
(A 10a) 

(A lob)  

( A  1Oc) 

(A 1Od) 

( A  10e) 

6 = f 2(yc)-l[ 1 + (&3/y)2f2]--1, 

3 = - s(S,/j) exp ( - 4~51) [(LP- y 6 )  sin y + (yP+ L6) cos y ] ,  

(A l0f)  

(A log) 

f = [(2&3)-2-- y2- (f/8R)21, ( A  10h) 

2 = [ ( f / 8 R ,  - 3f3E'I. (A 1 O i )  

8 = (c - SR)-l{(c8,/f) [Py - 6 ( & ~ ~ 1  -fc-l)]+ j ( c  + 8,) exp ( - f /aR)> ,  (A 10j)  

and where, in (A l O d j ) ,  y = kn and c = cn. 
Although the cross-shelf structure of $n is the same as for barotropic continental- 

shelf waves, the vertical structure of the resulting velocity field depends on the 
magnitude of 8,. For 8, < 1,  the velocity components are essentially barotropic, 
whereas for 8,B 1,  g6 - -a,#,  g +  ( c / f  )gc N -af#, and the velocity field is bottom 
trapped (ageostrophically for u) . 

One additional solution is found with the scaling 

# = h+ .-., 9 = J ~ + + a ( , ) g ~ ~ +  ..., c = co+a(o~col+ ..., (A l l a ,b , c )  

in which case (A 2a, b )  give 

Jo&- ( f / 8 R m O  = 0, 

$O&- azl 6% + (6BCO)-1f  $0 = ('BCO)-' !% 

(A  12a) 

(A  12b) 
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The boundary conditions are (A 3a, b),  (A 4a)  and (A 9a). The solution for go is the 
internal Kelvin wave 

g0 = COex?? ( - f c / $ R ) ,  (A 13a) 
where (A 3 b) implies 

CO = 8,. (A 13b) 
The solution for $o is 

40 = CO B{eXP ( -f C / ~ R )  + exp ($6/&~) [ - COs yC + P sin 76I}, (A 13C) 

(A 13d) 
where 

= (&BC)-' [(f / 8 R l 2 + f  (s,aB)-l+f (&Bc)-']-', 

P = [(2~,)-1 sin y + y cosy]-1 [(26,)-1 cosy 

- 7' sin 7' + (f/afi) exp ( -f 8ii' - &&')I, (A 13e) 

and where y is given by (A 6) with c = co. 
The solutions (A 7)  and (A 11)  are again not valid for parameter values where 

c, 21 co. (A 14) 

I n  the neighbourhood of these points, the two types of solutions, (A 7) and (A 1 l ) ,  must 
be considered simultaneously as in (3.22)-(3.32). Approximate solutions for a(,) < 1, 
but with no restriction here on the magnitude of a,, may be written in the form 

4 = exp (&c/'B) sin 76 + C'@[exp ( - f 6 / 8 R )  - exp ($6/&B) cos 7 6 1 9  (A 15a) 

= exP ( - f t / $ R )  + 76 + cos y6) exp ( - *c/&B) + j exp (f (t- ) / s R ) l ~  

(A 15b) 

where y is defined in (A 6). The solutions (A 15a, b )  satisfy the boundary conditions 
(A 3a)  and (A 9a). 

Substituting (A 15a, b) into the two remaining boundary conditions (A 3b) and 
( A ~ u ) ,  we obtain two homogeneous equations for C and D similar to (3.23a, b ) .  The 
requirement that these two equations be compatible gives the following equation, 
analogous to (3.24), for the eigenvalue c: 

A 

(y  cosy + a&' sin y )  ( 8 ~ 1 -  c-l) = R, (A 16a) 

A 

where 
R = q0)f-'B[( f / 8 R )  exp ( - A@) + (&&l cos y - y sin y ) ]  

x [?f (8%' + c-l) exp ( - f/8,) + y P  + (fc-' - &l) Q], (A 16b) 

(A 16c) 

Similar to (3.25) and (3.26), the solutions for c from (A 16) with q0) < 1 may be 
obtained, for most parameter values, by neglecting a. This gives y = k ,  and c = c,, 
as in (A lob, c), and c = co = 8, as in (A 13b). These solutions are not valid for values 
of the parameters near points where c, N co. To obtain the solutions for c in regions near 
these points a local analysis is used. 

Assume, as in $3,  that the parameter f is variable. Then c1 = co when f has the 
critical value 

and 
& = ( f / 8 R )  + *&'. 

fc = 8R&B(k? + (A 17) 
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I 
A 

b R  = 0.1 

FIGURE 5 .  The cross-shelf structure of the alongshore velocity components asaociated with the 
internal Kelvin wave and the n = 1 shelf wave for various values off.  The parameter values are 
discussed in appendix B. Specifically, a,,, = 0.3, 6~ = 0.33, k, = 2.18, f& = 0.26 x lo4 s - ~ ,  
Cs z L,c = 90 km, ci 100 cm s-1. The variation of f is indicated by th? va$ation of 
8~ = &/(f'L,c), where SR = 0.43 at the critical latitude f' = f&. For f' < ~ & S R  > S R C ) ,  the 
eigenfunction in the left column ( E l )  is the n = ,L shelf wave and the eigenfunction in the right 
column (E2) is the internal Kelvin wave. For SR = 1.3, 0.7,  0.43, 0.3, 0.1 the corresponding 
latitudes are 3.4", 6.3", 10.3', 14.7", 49.8", the phase speeds in cm s-l for El are 33, 59, 85, 97, -, 
and for E2 are -, 103, 114, 147, 430 respectively. The velocities are normalized SO that, at 
z = 0, imax (q, v2)J = 1. 
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6~ = 0.7 
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FIGURE 6. The cross-shelf structure of the onshore-offshore velocity components associated with 
the internal Kelvin wave and the n = 1 shelf wave for various values o f f .  The parameters 
correspond to those in figure 5. The velocities are normalized so lmax (ul, uz)l = 1. 

Solutions for c are sought in the neighbourhood of f c  by expanding f and c as in (3.28), 
where here cc = sR. The approximate solutions for E are given in the form (3.29) where 
K - t B a n d  

7 (A 18a) 
16a(,,(b - @gl) [ 1 - (6,b)t exp ( - @)I2 

6&b(b + 26~l)Z ( 1  + 2b) 
K =  

= f C / $ R .  (A 18b) 

The cross-shelf structure of the velocity components associated with the internal 
Kelvin wave and the n = 1 shelf wave are shown in figures 5 and 6 for various values of 
f less than, equal to and greater than f c .  The solutions were calculated from (A 15) and 
(A 16) using parameter values discussed in appendix B. The change in character of the 
eigenfunctions as a function off is clearly illustrated. For f < f c  and aR = 1.3, 0.7, the 
n = 1 shelf wave is essentially bottom trapped and the internal Kelvin wave has the 
expected exponential variation in the upper layer, with v1 > v 2  since a(,,) < 1. In con- 
trast to a flat-bottom internal Kelvin wave, the velocity in the lower layer v 2  here is in 
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the same direction as v1 owing to effects of the bottom topography. At f = f c ,  
8, = 0-43, both eigenfunctions have depth-dependent baroclinic velocities. For f > f c  
and 8,, = 0-3, the eigenfunction, which is the shelf wave for f < fc, has the structure of 
an internal Kelvin wave whereas the other eigenfunction, which is the internal Kelvin 
wave for f < f c ,  has the structure of a shelf wave with weak shear. For 8n = 0.1, the 
latter becomes essentially a depth-independent barotropic shelf wave. 

The solutions for $ and g in (A 15), the solutions for c from (A l6) ,  and the expression 
for I? in (A 18) reduce, in the limit S, B 1, 8R < 1, to the appropriate results in 3 3. 

I n  connexion with the validity of the slowly-varying approximation, the estimate 
mentioned after (4.17) of 

c,,/c, = k 1/(2fCK+), (A 19) 

gives the following condition, analogous to (4.18), on l c / w l :  

I c c b 4  < f<.JW3. (A 20) 

For a < 1, the internal-Kelvin-wave solution (A 13a) is a valid first approximation 
to one of the solutionsto (A 2a, b )  for alrvalue s of aft. When ais not small, this is not the 
case and the equations (A 2a,  6 )  may be fully coupled depending on the value of the 
parameter h = S,i(0)/8B. 

I n  Allen (1975), it was shown, for the exponential slope, that with h < 1 (actually 
a(o) h < 1) (A 2a,  b) uncouple, so that an internal Kelvin wave with decay scale SR(o) is a 
valid first approximation for one of the solutions. For larger values of A, such that 
a(,,h2 -+ O( l ) ,  the equations for g and $ become fully coupled and the internal Kelvin 
wave is replaced by a solution of more general form. 

I n  the opposite limit, i.e. where SR$ 1, we expect that an internal Kelvin wave with 
decay scale SR(l) forms a valid first approximation to one of the solutions of (A 2a, b ) .  
As 8, is decreased, however, topographic effects should become important a t  some 
point, with the resultant coupling of (A 2a, b) .  The solutions obtained here for small 
a are useful for demonstrating that the dependence of the coupling of (A 2a, b )  when 
8, is large also depends on the parameter A. In  this case, we find that for a(o) < 1 the 
internal Kelvin wave is a valid first approximation, but that, as h decreases so that 
a(o)h-2 -+ O ( l ) ,  topographic effects become important and the equations (A 2a, b )  
become fully coupled. 

The parameter dependence of the topographic coupling in (AZa,b) may be 
illustrated by examining the relative magnitude of go and in (A l i b ) .  The 
equation for is 

QOl& - (f /o go1 = ( q o ) / m  [ ( a B C O ) - ' f  2 4 0  + (f/a,)2 9"o - &1(fc;19"o +&)I, (A 21) 

with boundary conditions obtained from (A 3 b )  and (A 4 b)  using (A 11 b, c ) .  We omit 
the detailed form of the solution for go,, but note that the results show 

a(o)gol/go a(,)A2 for a(o,h2 < 1,  (A 22a) 

(A 22 b )  

Since (A 2a, b )  are coupled for a(o)Qo,/Qo = O( l ) ,  (A 22a, b)  exhibit the coupling depen- 
dence on A. 
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Insight into the way in which (A 22a, b) arise may be obtained from rough order-of- 
magnitude estimates. Assuming for the exponential slope that S, < 1, we may estimate 
from (A 12b) that  

$0 = fg(& &J-l go.  (A 23a) 

Utilizing (A 23a) in (A 21), we obtain 

go1 = q ( S B ~ B ) - 2 0 0 .  (A 23 b )  

A choice for St which is consistent with (A 23a, b )  is 

S,E min (aR, SB) .  (A 24) 

The use of (A 24) in (A 23 b) gives the results (A 22a, b) in the appropriate limits. 

Appendix B. Parameter values 
For an estimate of parameter values under oceanic conditions, we use the results in 

appendix A from the exponential slope model with a0 < 1 .  We restrict our attention 
to the low-latitude region of the eastern Pacific Ocean, south of the equator, off South 
America. 

Dimensional local values of the wave speed of the first (n = 1 )  shelf-wave solution 
as a function of latitude may be roughly estimated by using (A l o b )  and the values 
of the shelf-slope width in table 1.  Recall that, under the assumption a(,) < 1, this 
relation gives a valid first approximation to the shelf-wave speed regardless of the 
relative magnitude of the internal Rossby radius of deformation and the shelf-slope 
width or, more precisely, independent of the value of h = 8R(o)/&B. 

We use a constant value of 8, = 0.33, which corresponds to the assumption that in 
the exponential slope model the ratio of the depth a t  the coast Hie) to the depth at  the 
slope-interior junction Hh has a fixed value of H{,,)/H; = 0.05. This is satisfied, for 
example by If{,,) = 180 m and HA = 3650 m. The dimensional value of 8, is then given 
by Sh = 8,L,. With S, specified, the solution of (A 1Oc) gives El = 2-18. The dimen- 
sional value of the n = 1 shelf wave speed, from (A lob),  is 

c; = f 'LS[8,(kt + $Sii2)]-1, (B 1)  

where f' is the dimensional Coriolis parameter. Values of 8; and c;, calculated using the 
appropriate local values off ' and L,, are given in table 1.  

The wave speed of the internal Kelvin wave in the region of interest is estimated to 
be c; = 100 cm s-1 (based on Ap/p2 and H ;  = 70 m). It may be seen from 
the values of c; in table 1 that, as the latitude increases, c; increases so that c; E c; first 
at some location between 10" and 11"s. We use that critical latitude for further 
estimates of parameter values. 

For c; = 100 cm s-1, (B 1) implies that f& L,, = 233 ern s-l, which should hold a t  some 
particular latitude between 10" and 11" S. If we assume L,, = 90 km, which is between 
the values of L, a t  10' and ll", we obtain f& = 0.259 x 104s-l. This value of fh corre- 
sponds to a latitude of 10" 15's. 

With /3' = 2.26 x 10-13 cm-l s-l, (A 20) gives a restriction on the wavelength in the 
y direction, 6, = 2nc/w, such that the slowly-varying approximation is valid. In  terms 
of dimensional values, (A 20) implies 

1-5 x 

s; < L, = (2nf&y')R. 
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8~ = 0.33 p' = 2.26 x cm-' s-l 
k, = 2-18 
c; = 100 cm 8-1 

f h  = 0.259 x 8-l 

fL/P,' = 115Okm 
K = 0.241ao, 

Lv = 11ookm f6Lllc = 233 om s-l 

TABLE 2. Summary of parameter values estimated in appendix B. 

Evaluating l? from (A 18) with fc/8, = f&L,,/c; = 2.33, we obtain l? = 0.241a(,,. 
Although the det,ermination of l? was based on the approximation a(,) < 1, for an 
estimation of S, we use a(,) = 0-64, corresponding to  the observed pycnocline depth of 
HI = 70 m and to  H:,) = 180 m. This gives L, = 1100 km which is discussed in § 5 .  

In the plots of eigenfunctions in figures 5 and 6, however, we choose a smaller value 
for a,,,, i.e. a(,) = 0.3, but we keep c; = 100 cm s-l, so that, with Hi,, = 180 m, this case 
corresponds to H i  = 41 m and Ap/p2 = 2.5. A summary of parameter values is given 
in table 2. 

We note that the internal Kelvin wave speed c; = l00cms-I and the shelf-wave 
speeds in table 1 a t  the appropriate latitudes are substantially less than the value of 
230 cm s-1 observed by Smith (1978) between 10" and 15" S off Peru. The reasons for 
this lack of quantitative agreement are not completely understood, but are probably 
due to  inadequacies of the two-layer model in representing the coastal trapped waves 
in that location. 

The estimated value of S,, 2: 260 km for a two-layer model of the eastern equatorial 
Pacific Ocean, given in 8 1, follows from the assumption, based on data from Wyrtki 
(1964), that  a t  115OW Ap/p2 N 2.5 x 10-3 and H i  = loom, which gives 

He, = (Ap/p,) H i H L / ( H ; + H k )  2: 25cm. 

Appendix C. Mechanical analogy 
A simple mechanical system with a behaviour similar to  that found for the waves in 

6 3 is provided, as noted by Garrett (1969), by two weakly-coupled linear harmonic 
oscillators. This analogy may also be extended to the case of a slowly varying environ- 
ment, such as in 3 4. 

Consider two weakly coupled pendulums. There are two normal modes of oscillation. 
For pendulums of different length, one mode will have energy primarily in one 
pendulum, with a modal frequency close to  the natural frequency of that pendulum, 
and the second mode will have energy primarily in the other pendulum. If the 
lengths of the pendulums are varied, so that the long pendulum becomes the short 
one, and if the modes are identified as continuous functions of the lengths, it is found 
that the structure of each mode changes so that the concentration of energy 
switches t o  the other pendulum. When the lengths are equal, the energy in each 
mode is equally partitioned between the two pendulums. This behaviour is depicted 
in figure 7. The analogy with the behaviour of waves in 3 3 follows from the identifica- 
tion of changes in length of the pendulums with changes in f and of oscillations is 
a particular pendulum with the motion in a particul+r type of wave. The situation 
where the pendulums have equal lengths corresponds, of course, to f = fc. 
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Mode 1 

Mode 2 T A 
6 

P 
FIGURE 7. Schematic diagram of the behaviour of the two normal modes of oscillation of two 
linear, weakly coupled pendulums as the relative lengths of the pendulums are varied. The 
magnitudes of the arrows indicate the relative concentration of energy in each pendulum. 

[ I  t 2  > t l  

FIGURE 8. Schematic of the behaviour in time of the oscillations in a problem where the length 
of the pendulum on the right is varied slowly and where the oscillations are started initially 
with energy only in one mode (i.0. mode 2, from figure 7) .  
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To extend the analogy to the case of a slowly varying environment as in 5 4, consider 
a problem where the lengths of the pendulums are varied slowly. A WKB type of 
analysis of the governing equations for this system, outlined below, shows that the 
action in each mode, where the action is the energy in the mode divided by the fre- 
quency, is conserved provided the variations are slow enough. I n  that case, if oscil- 
lations are started with energy in one mode and with no energy in the other mode, only 
the mode with initial energy will be present a t  later times. 

Consider a situation, therefore, where the oscillations are started in only one mode 
and where, for example, the length is varied so that the initially longer pendulum 
becomes the short pendulum. A problem of this type is illustrated in figure 8. Since the 
oscillations remain only in the initially excited mode, the concentration of energy 
switches from one pendulum to the other as the length varies past the point of equal 
lengths. The analogy of the behaviour in this problem with that of the waves in $ 4  
follows immediately from the same identification of waves and pendulums noted above. 

It is useful to outline briefly an analysis of the coupled, slowly varying pendulum 
problem which parallels that  in $ 4  and which establishes in a similar manner the 
condition, analogous to  (4.18), that the slowly-varying approximation remains valid. 
This condition may then be compared with the results from a more complete 
asymptotic analysis of linearly coupled, slowly varying oscillators by Grimshaw & 
Allen (1979). The governing equations are assumed to be 

Y l t t  + Y1 = 2PA2Y2? (C 1 a )  

Y 2 t t +  Y2 = 2PA2Yl, (C1b) 

where T = st, Al(0) = A2(0) = A, 6 4 1, and p 4 1. Solutions are sought in the form 

Substituting (C 2) in (C 1) and expanding A = A, + €A1 + . . . , B = B, + sB1 + . . . , we 
obtain 

(w2 - A?) A, + 2pA2B0 = 0, 

2pA2A0 + ( 0 2 -  A;) B, = 0, 

(w2 - A;) A, + 2pA2B1 = i(2A0,w + A o w T ) ,  

2pA2A1 + (w2 - A:) B1 = i(2BOTu + Bow,).  

From (C 3 a ,  6)  we find 

w2 * - - E(A;+h%) 1 f $[(A2,-Ai)2+ 16p2A4]4, 

which for Tlp < 1 gives 

U; = A 2 + A T ( A ; + A i )  ... 2pA2[1+(A;-AL)2(2pA)-2T2+ ...I 3, 

where A;,2 = Al,2T(0) .  
The compatibility condition for (C 4a,  b )  is 

(d- A;) (2B,,w + Bow,) - 2pA2(2Ao,w + A,w,) = 0. 

With (A , ,  B,) = (a ,  b )  exp (ix), (C7) and (C3a ,  b )  imply 

[ (a2+b2)w]T  = [€/WIT = 0, XT = 0, 
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where & = (a2+ b2)  02. Relation (C 8a), of course, is analogous to  (4 .10b)  and expresses 
the conservation of action & / w  for each mode. 

To check the validity of ( C 3 ) ,  ( C 4 )  and (C8) near T = 0 we examine the ratio of 
neglected to  retained terms in (C 3) ,  for example 

2cA0, w 
A , ( d  - A t )  

R =  a t  T = 0. 

It follows from (C 6) and the definition of A ,  that  

R = 2.(2phl-1 (aT/a)(ob (C 10) 

(aT/a)(O) = (A; - 4). (C 11) 

where (aT/a)(o) = a,(O)/a(O). A determination of (aT/a)(o) using (C 8) gives 

Note that approximating (aT/u)(0) E i/(2AT) and estimating AT E 2 p h / ( h ;  -hi) from 
(C 6) also gives (C 11) .  As a result, 

R 2 eIh;-h;l/(2,~h)~. (C 12) 

For R < 1, the slowly-varying approximation remains valid in the neighbourhood of 
T = 0,  equahions (C 3a, b )  and (C 8) determine the lowest-order approximate solution 
and the action in each mode is conserved. Since +A = Aq,,  = (w+ - (C 12) is 
clearly analogous to  (4 .20 ) .  

I n  the analysis of Grimshaw & Allen (1979), a multiple-time scale asymptotic pro- 
cedure is used to derive equations which describe the possible mode coupling near 
T = 0. These equations are solved exactly. It is found that the strength of the mode 
coupling depends on the parameter R in (C 12) .  For R < 1, the amount of action 
exchanged between modes is exponentially small. I n  fact, for the problem described in 
figure 8, where all the action is initially in one mode, most of the action (4) is retained 
in that mode even if R = 1.  

It seems likely that the analysis in Grimshaw & Allen (1979) may be extended to the 
wave problem in 5 4 and that a similar result will follow. The extended analysis would 
probably show, as in the oscillator case, that most of the energy would remain in the 
originally excited eigenfunction even if 8,; N L,. 
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